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ABSTRACT: This study describes an automated analysis of real-time tropical cyclone (TC) aircraft reconnaissance obser-
vations to estimate TC surface winds. The wind analysis uses an iterative, objective, data-weighted analysis approach with
different smoothing constraints in the radial and azimuthal directions. Smoothing constraints penalize the data misfit when
the solutions deviate from smoothed analyses and extend the aircraft information into areas not directly observed. The
analysis composites observations following storm motion taken within 5 h prior and 3 h after analysis time and makes use
of prescribed methods to move observations to a common flight level (CFL; 700 hPa) for analysis and to reduce reconnais-
sance observations to the surface. Comparing analyses to several observed and simulated wind fields shows that analyses fit
the observations while extending observational information to poorly observed regions. However, resulting analyses tend
toward greater symmetry as observational coverage decreases, and show sensitivity to the first guess information in unob-
served radii. Analyses produce reasonable and useful estimates of operationally important characteristics of the wind field.
But, due to the radial and azimuthal smoothing and the undersampling of typical aircraft reconnaissance flights, wind max-
ima are underestimated, and the radii of maximum wind are slightly overestimated. Varying observational coverage using
model-based synthetic aircraft observations, these analyses improve as observational coverage increases, and for a typical
observational pattern (two transects through the storm) the root-mean-square error deviation is,10 kt (,5 m s21).

SIGNIFICANCE STATEMENT: Many applications need estimates of 2D surface winds in tropical cyclones in real
time. While real-time aircraft-based observations of the winds inside tropical cyclones have been available for several
decades, there have been few automated and objective methods to analyze this information to provide estimates of the
strength and distribution of the surface winds. Here, we provide details of one method that fuses these unique observa-
tions to provide useful 2D analyses of the winds in and around tropical cyclones.
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1. Introduction

Aircraft reconnaissance provides routine in-storm tropical
cyclone (TC) observations in the North Atlantic and eastern
North Pacific for the operational and research communities.
Since the mid-1990s, aircraft reconnaissance has disseminated
flight-level and Stepped Frequency Microwave Radiometer
[SFMR; Uhlhorn et al. (2007) and references therein] obser-
vations in real time via a standardized format known as High
Density Observations (HDOBS). Despite the real-time avail-
ability of these observations, few tools exist to analyze these
winds and even fewer tools to create analyses or estimates of
the 2D surface wind field.

One method, the Hurricane Research Division H*Wind
system, combines reconnaissance surface station, ship, and
buoy observations, and satellite-derived atmospheric motion
vectors. The H*Wind system composites these observations
in a storm-following framework over a period, to estimate the

1-min sustained 10-m level wind with appropriate adjustments
for the wind averaging period and height (Powell et al. 1998).
Because of these steps, H*Wind generates a sophisticated and
robust surface wind analysis (Powell et al. 2010). The National
Hurricane Center (NHC) assessed the H*Wind system for
suitability in operations as part of the Joint Hurricane Testbed
(JHT; Rappaport et al. 2012). Unfortunately, H*Wind never
became an operational product. Since then, the H*Wind sys-
tem and its analyses became proprietary, but remain available
for research applications.

In 2011, Knaff et al. developed a simple automated, objec-
tive algorithm to estimate and analyze the surface wind field
from aircraft reconnaissance observations via the HDOBS as
a JHT project. The algorithm extends from a satellite-only TC
surface wind analysis as described in Knaff et al. (2011). The
algorithm also attempts to loosely follow some operational
practices while accommodating other suggestions from the lit-
erature for the treatment of SFMR-based surface winds and
the reduction of flight-level winds to the 10-m marine expo-
sure. The original Knaff et al. (2011) algorithm was adapted
to use that combination of the 2012–14 guidelines for input
observation treatment. Note that these guidelines change as re-
search and operations glean new insight. JHT recommended the
algorithm for operational implementation in 2014, but a transi-
tion to operations did not occur. However, the development of
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an updated fitting algorithm and public dissemination and shar-
ing1,2 of real-time TC surface wind analyses continued.

Despite lacking formal documentation, these wind analyses
are used for application development, validation of surface
wind fields, estimation of the radius of maximum winds, and
in several studies (e.g., Mouche et al. 2019; Nolan et al. 2021).
Therefore, the manuscript’s purpose is to document the develop-
ment and formulation of this real-time automated TC surface
wind analysis. Section 2 describes the observations used to make
these analyses and their treatment, and section 3 describes the
methods used to analyze those observations. Section 4 provides
performance information including how well the observations fit,
sensitivity to observational coverage, and a few comparisons with
independent surface wind observations (more in the online
supplemental material). The last section provides a summary and
discussion of future work.

2. Observations and their horizontal and vertical
adjustments

The U.S. Air Force and NOAA weather reconnaissance
aircraft HDOBS include the observation time, latitude, longi-
tude, aircraft static air pressure (ASP), aircraft geopotential
height, extrapolated surface pressure (APS $ 550 hPa) or D-
value (APS , 550 hPa), sign of the temperature, air tempera-
ture, dewpoint temperature, wind direction, wind speed, peak
overwater 10-s surface wind speed, rain rate, and quality flags.
HDOBS typically have 30-s frequencies. All quantities except
the peak surface winds and rain rate are 30-s averages sampled
615 s of the observation time. The peak surface wind and rain
rate based on the SFMR is also sampled615 s of the observation
time. The SFMR algorithm has been in use since 2016 (Klotz and
Uhlhorn 2014). And the HDOBS format is provided in appendix
G of the National Hurricane Operations Plan (2022; https://www.
weather.gov/media/nws/IHC2022/2022_NHOP_June_1.pdf).

In incorporating the HDOBS, the analysis discussed in
section 3 uses the location (latitude and longitude), time,
ASP, flight-level winds, and peak SFMR surface wind speeds.
In addition to HDOBS, and to provide the recent track of the
storm, we use observed times and center locations, hereafter
referred to as “fixes,” working best tracks, and forecasts.
These observations and forecasts come from the real-time da-
tabases of the Automated Tropical Cyclone Forecast system
(ATCF; Sampson and Schrader 2000). Specifically, the air-
craft-based, (i.e., “AIRC”) and radar-based (i.e., “RADR”)
fixes, the working best track, and the interpolated version of
the most recent official forecast (i.e., “OFCI”), are used to
construct a short-term storm track from 24 h before to 12 h af-
ter the analysis time. Table 1 provides an example track for
Hurricane Ian (2022) for a 0600 UTC 27 September analysis
and all the nonsynoptic times provided by the “AIRC” center
fix locations. The HDOBS and fixes come from both Air
Force (AF301) and NOAA (NOAA9) aircraft.

Analyses are created for synoptic times of 0000, 0600, 1200,
and 1800 UTC. The observations are aligned in a storm
motion-relative framework using the short-term track infor-
mation. Observations are composited relative to the location
of the storm and the observation time (Cline 1920) with the
assumption that TC structure and intensity change slowly dur-
ing collection.3 The time window for compositing is up to 5 h
backward and 3 h forward. In real time, the analysis is run
50 min after the synoptic time and then again 2 h, 50 min after
the synoptic time. So, the analyses are available for opera-
tional consideration at the National Hurricane Center near
the beginning and again near the end of the advisory process.
Table 1 provides an example short-term track for Hurricane
Ian that the algorithm uses to estimate the tropical cyclone
center position near the end of the operational advisory pro-
cess. Thus, the windows are roughly 6 and 8 h for the interim
and final analyses but often only capture 3–4 h of observa-
tions. Cubic splines under tension are used to perform the in-
terpolation of latitude and longitude as a function of time.

TABLE 1. Example of the short-term track created from the
combination of the working best track information, the 12-h
forecast position, and the aircraft-based (and radar-based, when
available) center fixes for Hurricane Ian at 0600 UTC 27 Sep
2022. Columns provide date, time, and the latitude and longitude
of the fix/track/forecast, and in this case, there are 20 track
points extracted. The working best track locations are shown in
normal text, aircraft fix locations are shown in boldface, and the
12-h forecast location (OFCI) is shown in italics.

Date Time (UTC) Lat (8) Lon (8)

26 Sep 2022 0600 17.70 281.70
26 Sep 2022 0615 17.76 281.76
26 Sep 2022 0718 17.99 281.87
26 Sep 2022 1011 18.41 282.13
26 Sep 2022 1125 18.63 282.35
26 Sep 2022 1139 18.65 282.43
26 Sep 2022 1200 18.70 282.40
26 Sep 2022 1244 18.79 282.48
26 Sep 2022 1308 18.87 282.42
26 Sep 2022 1453 19.18 282.68
26 Sep 2022 1632 19.53 282.90
26 Sep 2022 1800 19.70 283.00
26 Sep 2022 2203 20.35 283.28
26 Sep 2022 2321 20.71 283.32
27 Sep 2022 0000 20.80 283.30
27 Sep 2022 0102 21.02 283.39
27 Sep 2022 0241 21.29 283.56
27 Sep 2022 0356 21.38 283.66
27 Sep 2022 0600 21.80 283.60
27 Sep 2022 1800 24.40 283.50

1 http://rammb-data.cira.colostate.edu/products/tc_realtime/.
2 ftp://rammftp.cira.colostate.edu/knaff/JHT_TCSWA/.

3 In rare instances, the 6-hourly intensity can change 25 kt with
corresponding structure variations [e.g., Hurricanes Patricia
(2015), Delta (2020)]. However, using best track data interpolated
to fix times 2004–22, 96% of the fix intensities are within610 kt of
the 8-h average intensity, and 85% of the 34-kt winds are within
610 n mi of the 8-h average 34-kt wind radii. For the 34-kt wind
radii comparisons, the average 34-kt wind radii average is the aver-
age of all nonzero quadrant values in the TC’s final best track.
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Fitting time versus latitude–longitude pairs (knots) to a cu-
bic spline using software (Press et al. 1992) allows estimates
of these quantities within the time interval, and thus the po-
sition of the storm at the observation times. In our formula-
tion, we added a constant tension term T 5 0.3 that
multiplies the second derivative terms in each knot interval
(note: traditionally, tension in splines is a reciprocal of our
T, as in De Boor 1978). This restrains the amount of non-
linear behavior between knots that occasionally produce
undesired interpolation when using real observations with
variable temporal spacing. Figure 1 shows the details of the
resulting track used to relocate aircraft observations for the
Hurricane Ian example using the short-term track informa-
tion and the resulting storm motion-relative observations
and locations.

For guidance, we use a combination of suggested treat-
ments of these observations (Franklin et al. 2003; Powell et al.
2009; Uhlhorn and Black 2003), operational practices (e.g.,
Brennan 2019), and physical justifications (Kepert 2001;
Kepert and Wang 2001; Holthuijsen et al. 2012). As in
Franklin et al. (2003), we divide the storm into an eyewall
and outer region for flight-level to vary surface reduction
factors (R). The values we use for R for eyewall and outer
regions and different broad pressure layers are shown in Ta-
ble 2. These values are more conservative than those recom-
mended by Franklin et al. (2003) for estimating the storm’s
maximum sustained 1-min winds from flight levels. Partial moti-
vation for these choices comes from slightly lower estimates in
R discussed in Powell et al. (2009). The pressure-layer-based

values of R also allow for adjusting winds to any of these layers
and the surface.

We define the eyewall region as the areas inside the smaller
of twice the RMW or RMW plus 20 nautical miles (n mi;
1 n mi5 1.852 km) and the outer region as 4 times the RMW.
Defining the outer region at a greater radial distance results
in a transition zone of R between the eyewall region and outer
region, rather than an abrupt change implied in Franklin et al.
(2003). In this transition zone, we decided to linearly interpolate
R between the eyewall and outer regions, which addresses the
uncertainties in these RMW-based regions.

In addition to the radial variations of R, the eyewall region
and outer regions vary azimuthally by 4% (Franklin et al.
2003) (i.e., from 0.88 to 0.85 at 700 hPa) and 17% (i.e., from
0.83 to 0.69 at 700 hPa), respectively. The minima of R are
located right of TC motion, which is supported by SFMR-
dropwindsonde surface wind studies (Powell et al. 2009;
Uhlhorn and Black 2003), and by Brennan (2019, slide 14)
who suggests a 20% difference from left (0.75) to right (0.90).
This outer asymmetry in R is meant to account for the effect
of larger drag coefficients left of motion caused by wave ori-
entation discussed in Holthuijsen et al. (2012) and effects re-
lated to boundary layer jets (Kepert 2001; Kepert and Wang
2001).

Figure 2 shows how these factors vary spatially for 700 hPa
to surface R values for two RMW values, namely, 5.4 and
27 n mi (i.e., 10 and 50 km) with the TC moving toward the
top of the page. The occurrence of 5.4 n mi RMW is rare,
while 27 n mi RMW features are common (Schwerdt et al.
1979; Willoughby and Rahn 2004; Knaff et al. 2015; Klotz and
Jiang 2017; Combot et al. 2020). Thus, in the application, the
RMW determines the radial distribution of R, and spatial dif-
ferences can be quite large as shown in these two examples.
Note that as the analysis runs, the RMW can change, and the
reduction factors are dynamic throughout the analysis pro-
cess, described in section 3. Again, note that these observation
treatments can be changed if new observations or updated
studies develop improved methods for performing a simple
flight-level to surface wind reduction (e.g., Kepert 2023).

Prior to running the first objective analysis, we move ob-
servations collected in our time window to a common time
(i.e., the analysis time). Then, wind speeds and wind compo-
nents are adjusted to a common 700-hPa flight level or com-
mon flight level (CFL) for further analysis as described in
section 3.

Finally, to speed up algorithm convergence, the analysis
scheme uses a satellite-based first guess provided by the
NESDIS operational version of the Multi-satellite-platform

FIG. 1. Fixes (blue dots), analysis center (magenta square), the
splined track plotted every 2 min (thin blue line), and the storm-
motion relative flight-level winds (kt) adjusted to 700 hPa available
for the analysis (vectors). This example is from Hurricane Ian (2022)
created shortly after 0600 UTC 27 Sep.

TABLE 2. Maximum pressure/flight-level to surface wind reduction
factors for eyewall and outer regions of the TC.

Level (hPa) Eyewall (Rew) Outer vortex (Ro)

600–800 0.88 0.83
800–900 0.78 0.78
900–990 0.73 0.73
990-Sfc 0.77 0.77
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Tropical Cyclone Surface Wind Analysis (MTCSWA; Knaff
et al. 2011). The first guess is at the 700-hPa level and is the
intermediate wind analysis, performed above the influence
of surface friction. Without MTCSWA, a Rankine vortex
using the maximum observed wind speed and a 50-km ra-
dius of maximum wind (RMW) provides a first guess wind
field.

3. Analysis methods

With the typical pattern of aircraft observations (figure four
or alpha patterns) and the general circular geometry of TCs,
we use an appropriate analysis strategy. Our analysis method
uses an iterative, objective, data-weighted analysis approach
based upon a model-fitting method with directional smooth-
ness constraints termed “variational formalism with smooth-
ing constraints” in Thacker (1988). This method allows input
observations to be weighted by taking into account for differ-
ent types or quality of observations (Mueller et al. 2006) and
an iterative solution created via the method of gradient or
steepest descent. The analysis counterpart of the observations
is estimated using bilinear interpolation to the observation lo-
cation (Mueller et al. 2006; Knaff et al. 2011). Prescribed
smoothing constraints in radial and azimuthal directions allow
for the creation of a smoothed analysis termed the “model
counterpart” that filters the influence of observations in those
directions. Following Mueller et al. (2006), a cost function (1)
minimizes the differences between the data misfit that penal-
ized for departures from the model counterpart. In (1) there
are k observations with weights wk, and i and j are polar grid
indices. The data misfit is the first term in (1), where the anal-
ysis at the observation locations is given by Uk. The second

term is the smoothness penalty, where drr and duu are the first
order discretized second derivative in radial and azimuthal di-
rections, Uij is the gridded analysis, and a and b are the
smoothing constraints:

C 5
1
2
∑
k

k51
wk(uk 2 Uk)2 1 ∑

I

i51
∑
J

j51
[a(drrUij)2 1 b(duuUij)2]:

(1)

Mueller et al. (2006) provides a description of the smoothing
constraints in terms of a frequency response function to a
pure cosine wave with wavenumber k. They discuss how for a
2Dr wave on the analysis grid (k 5 2p/2Dr), the amplitude
will be reduced by a factor of (1 1 32a)21. For (1), a and b

are chosen by half-power distances in radial and azimuthal di-
rections. Readers are referred to Mueller et al. (2006) and
DeMaria and Jones (1993) for more explanation. For this
work, the polar grid has 301 radial points (Dr 5 2.0 km) from
r 5 1 to 601 km and 36 azimuthal points (Du 5 108), and the
wind components are input as radial and tangential values.

For analysis of aircraft-based observations, data weights
(wk) are assigned by wind type (aircraft versus SFMR) and
observed aircraft-based wind speeds. The nominal/average
data weight is w 5 1.0. SFMR wind speed data weights are
4 times larger (w 5 4.0) when flight-level winds exceed
75 kt (38.6 m s21; 1 kt ’ 0.51 m s21) and are 3 times smaller
(w 5 0.33) for flight-level winds below 50 kt, and linearly in-
terpolated between those wind speed thresholds. Similarly,
flight-level wind vector weights are given 4 times more weight
and 3 times less weight when the winds are below 50 kt and
above 75 kt, and weights are linearly interpolated between
those thresholds. These choices give SFMR more weight for

FIG. 2. Example of the 700 hPa to surface reduction factors as a function of radius of maximum wind. Shown are re-
duction factors (R) for RMW values of (a) 5.4 n mi or 10 km, and (b) 27 n mi or 50 km. Storm motion is toward the
top of the page.
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the most intense wind speeds,4 and this choice is justified by
Nordberg et al. (1971) who showed SFMR senses the sea state
best above wind speeds of 30–40 kt (15–20 m s21). More re-
cently, Sapp et al. (2019) note highly questionable wind
speeds below 30 kt and less sensitivity to rainfall’s effects
above 40 kt. For operational users, Brennan (2019) summa-
rizes the SFMR issues by stating, “Rain impacts not always
properly accounted for (mainly ,50 kt).” Furthermore, Sapp
et al. (2019) provide an independent validation of the current
SFMR algorithm with respect to rain rate and add support for
our weighting strategy. Again, the data weighting strategy can
be changed, noting the ongoing efforts to update the SFMR
algorithms (Sapp et al. 2019; H. Holbach 2021, 2023, personal
communication).

Since SFMR observations provide only a speed, the wind
components and wind speeds are analyzed separately. Once
the wind components (radial and tangential) and wind speeds
are adjusted to the CFL, the gridpoint wind components are
changed. This step ensures that the component-based wind
speed is identical to the separate pure wind speed analysis.
That is, we treat the pure speed-only analysis that contains
aircraft and SFMR inputs as truth. We calculate speed based
on the analyses of the radial and tangential winds at every
grid point, and a ratio between the pure wind speed analysis
and the component-based wind speed analysis is applied to
each component at each grid point. This readjustment occurs
following each of the five analysis steps as described next.

The objective analysis is run four times, which allows for
some additional quality control and smoothing constraint re-
finement. Figure 3 shows these steps. Before each analysis
runs, the original observations are readjusted to the CFL as
the observed RMW and Rs often change. This is a two-way it-
erative process whereby between each of the separate analy-
ses’ winds are adjusted from the CFL back to the original
pressure using recent values of R, then back to the CFL using
the updated values of R as the analyzed RMW changes. The
first analysis uses a first guess (data weights are w 5 0.2) com-
ing from the MTCSWA product (Knaff et al. 2011) or a pre-
scribed Rankine vortex described above if MTCSWA is
unavailable. The Rankine vortex is used less than 1% of the
time. This first guess weighting strategy follows that of Knaff
et al. (2011). For the adjustment of winds to CFL, a value of
50 km is assigned to the initial RMW. The smoothing con-
straints in the radial direction (a) and in the azimuthal direc-
tion (b) are fixed with half powers of 28.8 km and 3608 (i.e.,
data at 14.4 km and 3608 receives half the weighting)}a
smooth domain-filling first analysis that is symmetric with re-
spect to azimuth. After the first analysis, the first guess data
weights are reduced to w 5 0.05. For the next two analyses,

half powers are reduced to a 5 11.2 km and b 5 2008 and
then to a 5 6.4 km and b 5 1508, respectively. In rare instan-
ces, a gross quality control removes observations with absolute
errors larger than either 30 m s21 or 30% of the maximum an-
alyzed wind speed following the second analyses, setting those
errant data’s weights to zero. In the final analysis, the first
guess data weights are reduced further to w 5 0.013, and half
powers of a 5 4.8 km, and b 5 1208 are assigned. As a final
step, the wind speed errors between the analysis and observa-
tions at the CFL are analyzed using a 5 6.4 km and b 5 1508
and data weights of w 5 1.0. Analyzed errors are then added
back into the final CFL analysis, and the wind components
speed is adjusted one last time. This step is like the second
pass of a Barnes (1964) analysis and leads to greater fidelity
with reduced computation (Koch et al. 1983). We call this
analysis of CLF observations the Objective Iterative method
Utilizing Smoothing (OBITUS) analysis hereafter.

Surface type is then determined using a land mask. If lo-
cated over water, analyzed CFL winds are reduced to a 10-m
marine exposure using final estimates of R at the CFL, and in-
flow angles applied (Zhang and Uhlhorn 2012). Following
Knaff et al. (2011) and Boose et al. (2001), wind speeds over
land are reduced an additional 20% and inflow angles in-
creased an additional 208 from the marine exposure inflow.
Distance to land uses an algorithm briefly described in Merrill
(1987) and used in intensity forecasting models (e.g., DeMaria
and Kaplan 1999) with coastlines of continents and select is-
lands with a rough resolution of 30 km. Finally, zonal and me-
ridional winds are bilinearly interpolated to a 0.058 3 0.058
Cartesian grid for display purposes and other uses.

4. Performance

The OBITUS analysis discussed above stretches the input
observations to fill the observation-void regions and then
adds observation-based details by successive reanalyses with
weaker filtering. However, because of TC structure as well as
the typical observation sampling, smoothing is much greater
in azimuthal versus radial directions. This combination of fil-
ters, while necessary to stretch observational information to
the observation-void regions of the storm, has the greatest
impact in regions where wind gradients are the largest}
resulting in underestimates of extremes. To assess the perfor-
mance of these analyses, we first present the bulk statistics of
the fit of SFMR and flight-level observations from all cases
adjusted to the CFL. A sensitivity analysis based on synthetic
aircraft observations extracted from 3D model fields and com-
parisons with the 3D model’s surface wind field then follows.
We then present analyses with comparisons to independent
synthetic aperture radar (SAR)-based wind speeds (Mouche
et al. 2017).

a. Bulk statistics of the fit with respect to wind speed

One of the goals of this analysis is to provide useful and re-
liable locations of key features like standard wind radii and
RMW from aircraft reconnaissance observations. However, the
radial and azimuthal smoothing needed to make wind estimates
in unobserved areas affects the analysis of wind extremes. Here,

4 In 2017 and subsequent years, NHC noticed a discrepancy be-
tween SFMR surface wind speed estimates and surface winds esti-
mated from flight-level observations. The differences were most
noticeable in TCs with intensities above 115 kt. Investigation with
a larger dropwindsonde-based near-surface winds database shows
high biases of 1, 5, 7, and 10 kt at 80 kt, 120, 140, and 165 kt in
SFMR surface winds estimates, respectively (H. Holbach 2021,
personal communication).
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we examine the final analysis versus input wind speeds at the
CFL, i.e., prior to adjusting those analyses to the surface, to ex-
plore how closely the analysis represents the input observations.
This comparison avoids the complication of the spatially depen-
dent flight-level to surface wind speed reduction factors. In the
case of SFMR, the surface wind speed observations are adjusted

(increased) using the same reduction factors used to adjust
flight-level winds to surface observations in the final analysis.

We first present the comparison of CFL SFMR OBITUS
analysis versus SFMR observations adjusted to the CFL as a
function of wind speed (Fig. 4a). This comparison provides the
reliability of wind speed ranges based on SFMR observations.

FIG. 3. A schematic of the objective analysis process outlining the changes to data weights w
and half powers, a and b, that correspond to each step. Here U, V, and S are the zonal and me-
ridional components of the wind and wind speed, respectively.
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Here, we interpolate analysis values to the observation loca-
tions. The comparison is based on 743316 observations col-
lected from 2010 to 2022 and the observations are binned by
observed values every 1 kt. In a perfect analysis, the binned ob-
servations would correspond 1:1 with the binned analysis. The
analyses show low biases by points above and high biases below
the 1:1 line. SFMR wind speed analyses are slightly low-biased
overall, with small biases below 90 kt and larger underestima-
tions above 100-kt wind speeds. Below ;65 kt, the scatter is
somewhat larger. These results are expected given that the anal-
ysis will smooth steep wind gradients, and the weaker weighting
of SFMR below 75 kt, but the bias increasing linearly and

becoming pronounced at the highest wind speeds is unex-
pected. We feel this result may result from spatial mismatches
between flight-level winds and/or surface SFMR caused by
sloping eyewalls and center locations, and radial smoothing of
steep gradients.

Figure 4b shows a similar OBITUS analysis for 831 388 30-s
aircraft-based wind speed observations adjusted to the CFL.
Note the color bar ranges for Figs. 4a and 4b are different to
better display the ranges contained in the bins and the obser-
vational distributions. The aircraft-based winds have more
scatter than SFMR observations with an indication of slight
high biases at the lowest wind speeds and more pronounced
low biases above 65 kt.

The combination of Figs. 4a and 4b suggests that the
OBITUS analysis systematically underestimates the wind
speed at the CFL. The SFMR-based OBITUS analysis under-
estimates SFMR observations at all wind speeds whereas the
aircraft-based OBITUS analysis underestimates aircraft ob-
servations above ;65-kt wind speeds and overestimates air-
craft observations below;50-kt wind speeds. However, this is
only part of the story. We next examine the analysis error dis-
tributions as a function of radius.

Figure 5a shows the density of biases of the CFL SFMR
OBITUS analysis as a function of radius. The wind speed
biases at each radial 2 km 3 1 kt bin are not as variable as
one may suspect. The binned observations show that the ma-
jority of the analyzed SFMR wind speeds agree well with the
SFMR observations. In addition, the agreement between ana-
lyzed SFMR wind speeds and SFMR observations appears at
all radii, but with a very slight tendency to be low biased. The
largest scatter and most pronounced biases occur around 25 km.
The larger biases near the center are consistent with too much
smoothing, effects caused by small errors in the center location,
and mismatches due to the sloping radius of maximum wind.
Figure 5b shows the biases of the aircraft-based OBITUS wind
speed analysis in the same way as in Fig. 5a. Note again the color
bar has a smaller range in Fig. 5b; indicating greater scatter.
Here these figures indicate that the tendency for OBITUS analy-
ses to underestimate the aircraft-based wind speeds with the larg-
est underestimate occurring inside ;40 km. The analyses’ inner
core flight-level wind low biases mirror the high biases in analyz-
ing the SFMR suggesting the analysis lies between overestimated
SFMR winds and underestimated aircraft wind speeds. Else-
where, these biases mirror each other to a lesser degree, but the
analyses agree much better with the SFMR observations.

To provide readers a better idea of the fit to observations in
individual cases with differing intensities, data coverages, and
wind structure, difficult to infer from Figs. 4 and 5, the
supplemental material provides three additional cases from
the 2018 North Atlantic hurricane season, Major Hurricane
Michael, Hurricane Florence, and Tropical Storm Alberto that
more closely examines three individual cases.

b. Examination of analysis sensitivity to
observational coverage

In this section, we use a method similar to Uhlhorn and
Nolan (2012) to construct 700-hPa wind vectors and SFMR

FIG. 4. OBITUS analyses binned by observed wind speeds vs the
corresponding average of observed points. This provides a visual
estimate of the reliability of wind speed analysis at flight level for
(a) SFMR surface wind speeds adjusted to the CFL (700 hPa) from
the surface and (b) flight-level wind speeds. The black dotted line
represents a perfect match between the analysis and the observa-
tions. Please note the ranges in the logarithmic scale of (a) and
(b) are different with a smaller number of observations in bins in
(b), indicating greater scatter.
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(10-m) wind speed directly from the operational forecasts of
the Hurricane Weather Research and Forecast (HWRF)
Model to test the sensitivity to observational coverage (and
not a comprehensive assessment of skill). In this sensitivity
analysis, we assume that HWRF has a similar relationship be-
tween 700-hPa winds and the 10-m winds provided in nature,
and that HWRF wind-averaging periods are the same as the
HDOBS. We pick three flight patterns from those observed:
enhanced coverage, an alpha pattern, and a single transect
across the entire storm. Unlike Uhlhorn and Nolan’s work,
we want to determine how well the analysis system can recon-
struct the “observed” 2D surface wind field (10-m HWRF
winds) with the limited observations of the simulated flight
patterns and assess how the observational coverage affects

the resulting analysis’s ability to capture key features in the
2D wind field. For these analyses, we used the same first guess
used for real-time analyses.

Because HWRF structural features are larger than those
typically observed in nature, especially in the inner core (e.g.,
Dong et al. 2020), we halved the radial distances before creat-
ing the simulated flight-level and SFMR observations. This
should provide a more realistic inner core size and radius of
maximum wind for investigating the sensitivity to observa-
tional coverage. The scaling also ensures that the synthetic
aircraft observations extend beyond the 34-kt winds in most
quadrants. We use three separate initialization times and 6-h
forecasts from Hurricane Teddy (2020) as our cases, valid
0000 UTC 18 September (Case 1), 1200 UTC 20 September
(Case 2), and 1800 UTC 20 September (Case 3). From these
scaled model outputs, the enhanced, alpha pattern, and single
transect inputs are created. Root-mean-square error (RMSE)
for the entire field, intensity and wind radii statistics are pro-
vided for our three cases. Note the supplemental material
provides analysis sensitivity results based on the non-scaled
synthetic observations. The three differing flight-level pat-
terns show that improved observational coverage produces
2D analyses with smaller errors (Table 3 and Table S2 in the
online supplemental material). All analyses underestimate
the maximum winds, provide good estimates of RMW, and
have slightly smaller 34- and 50-kt wind radii (Table 3). The
limited sampling likely causes the latter.

Summary statistics (Table 3), however, provide scant details
of how the wind fields are spatially different. To provide read-
ers with these details, we examine the details of Case 3. Case
3 is a weakening hurricane with a large asymmetric RMW;
here, the analysis uses a first guess from the satellite-only
analysis valid 1500 UTC 20 September. At 1800 UTC
20 September, the vortex tracker (Marchok 2002, 2021) indi-
cated that HWRF had a 74-kt intensity and a 51 n mi RMW,
corresponding to 26 n mi in our scaled inputs.

Figure 6 shows the Case 3 analyses (Figs. 6a,e,i), the ob-
served winds with flight paths (Figs. 6b,f,j), the spatial biases
(Figs. 6c,g,k) and the scatterplot of the winds with color
coated biases (Figs. 6d,h,l) for the three flight patterns. The
supplemental material provides similar figures for Cases 1 and
2 (Figs. S5 and S6) and for analyses based on non-scaled in-
puts for Cases 1, 2, and 3 (Figs. S7–S9). The enhanced obser-
vational coverage, Fig. 6a, results in a 73-kt max intensity and
a 28 n mi RMW. However, the details of the observed vortex
(Figs. 6b,f,j) are quite interesting with a rather asymmetric re-
gion of wind exceeding 64 kt, and 34-kt winds protruding to
the east of the center. All the analyses are more symmetric
than the observed wind field due to the azimuthal smoothing.
The azimuthal smoothing and the lack of flight level observa-
tions in the eastern regions (Figs. 6c,g,k) remove the observed
bulge of 34-kt winds to the east, and the southernmost exten-
sion of 64-kt winds to the southeast. Those negative biases
(Fig. 6c) exist even in the enhanced observation analysis
(Fig. 6a). Similarly, the effects of the radial smoothing in the
southern and south-southeast portion of the TC’s core results
in a pronounced high wind speed anomaly that increases with
reduced observational coverage (Figs. 6c,g,k). Bias plots also

FIG. 5. Distribution of analysis errors (kt) for the OBITUS anal-
ysis of (a) SFMR-based wind speeds and (b) aircraft-based wind
speeds, both at the CFL, as a function of radius. The grid is binned
2 km 3 1 kt, and the color bar to the right of each panel provides
the logarithm of counts. Please note the ranges in the logarithmic
scale of (a) and (b) are different with smaller number of observa-
tions in bins in (b), indicating greater scatter.
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show the impact of the first guess that had stronger winds than
observed in the outer regions of the storm, where beyond the
observational coverage high biases emerge (Figs. 6g,k). The in-
ner core becomes more symmetric as observational coverage
decreases. Again, the difference shows a sensitivity to the first
guess outside observational coverage and to impacts caused by
the azimuthal and radial smoothing (south of the core), in re-
gions where there are no aircraft-based nor SFMR-based obser-
vations. In the single transect case, the inner core asymmetries
reverse, which is indicated by the associated biases (Fig. 6k).
The scatterplots show that the scatter increases with reduced
observational coverage, but both the enhanced and alpha cases
have very few points where the biases exceed 610 kt. The
biases in the single transect case are exacerbated by the flight
path being aligned with storm motion (;3258), where motion-
induced wind asymmetries would be minimal. Case 3 with its
pronounced asymmetries, demonstrates how the observational
coverage, imperfect first guess, and different azimuthal and ra-
dial smoothing effects the analyzed surface wind field.

c. Examples compared with SAR

While independent, in situ TC surface wind observations
are unavailable for verification, promising satellite-based
wind speed observations can provide some independent veri-
fication. The C-band SAR available on RadarSat-2, Sentinel-
1A, and Sentinel-1B have a cross-polarized mode that allows
for high spatial resolution, and nearly instantaneous retrievals
of extreme wind speeds found in TCs [detailed discussions in

Mouche et al. (2017, 2019) and Knaff et al. (2021)]. While
overpasses of TC scenes are becoming more common, over-
passes are infrequent due to operational procedures and con-
straints. Here we have selected three recent cases to compare
with the surface wind analysis. The data availability statement
describes the observations.

We provide a visual comparison of the wind speeds from
both SAR and the analysis at native resolutions with error es-
timates at a reprocessed resolution. With SAR wind products
being available at 500-m spatial resolution and able to resolve
higher wind speeds; a two-pass Barnes (1964) analysis is per-
formed with an e-folding radius of 12 km to provide a reason-
able comparison to the resolving capabilities of the surface
wind analysis. We remind readers that SAR winds are nearly
instantaneous and our analysis composites observations over
the most recent 8 h. Table 4 provides details of the SAR cases
used for comparisons.

The first example is from Hurricane Michael (2018; Beven
et al. 2019) at 1200 UTC 10 October, also see the supplemen-
tal (Figs. S1 and S4a). Figure 7 shows (Fig. 7a) the surface
wind analysis, (Fig. 7b) 500-m resolution SAR wind speed
product from Sentinel-1A, and (Fig. 7c) flight level wind barbs,
respectively. The analysis resolves a realistic RMW and rea-
sonable estimates of the 34- and 64-kt wind radii as indicated
by discontinuities in the color scale. SAR captures higher
wind speeds on the north to east portion of the eyewall}the
two closely spaced maxima near the center just outside the
RMW are likely due to high rain rates in the eyewall (Mouche

TABLE 3. Statistics for our three cases from both the scaled HWRF surface wind fields and intensity, RMW, and wind radii
estimates via the vortex tracker (Marchok 2002, 2021). The surface wind analyses used enhanced, alpha pattern, and single transect
observational coverage as described in the text. Shown are the RMSE of the entire wind field (kt) along with analysis estimates of
intensity (kt), RMW (n mi), and 34-, 50-, and 64-kt wind radii, denoted as R34, R50, and R64, respectively. R34, R50, and R64 values
are listed for northeast, southeast, southwest, and northwest quadrants (shown from left to right), and have been rounded to the
nearest 5 n mi increment. RMW and wind radii from the observations are half those provided by the operational HWRF tracker as
the wind field is radially scaled by 0.5, and rounded to the nearest nautical mile.

Observed Enhanced Alpha Single

Case 1 (valid at 0000 UTC 18 Sep)
RMSE 2.52 4.82 7.12
Intensity 111 101 102 98
RMW 19 18 17 18
R34 89 85 57 89 80 75 60 80 90 90 80 85 80 80 80 120
R50 63 45 33 55 55 45 35 45 55 55 45 55 45 40 45 45
R64 35 29 29 37 30 25 30 35 40 40 30 35 35 30 35 35

Case 2 (valid at 1200 UTC 20 Sep)
RMSE 2.24 3.88 5.47
Intensity 82 78 75 73
RMW 30 31 30 26
R34 106 104 77 88 90 90 80 85 90 90 80 85 100 100 90 95
R50 64 64 50 50 55 55 45 55 55 55 50 55 55 55 55 50
R64 49 44 36 36 40 40 30 35 45 40 30 40 30 30 30 30

Case 3 (valid at 1800 UTC 20 Sept)
RMSE 2.64 3.46 4.26
Intensity 74 73 71 72
RMW 26 28 26 25
R34 106 108 77 77 85 85 80 75 85 85 80 75 80 90 90 80
R50 60 61 49 48 55 55 40 50 55 50 45 50 45 50 50 45
R64 39 40 32 39 35 30 30 35 35 30 30 35 35 30 35 35
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et al. 2019), and not indicative of a secondary eyewall. Note
that a secondary eyewall/wind maximum is not evident in the
aircraft reconnaissance observations (Figs. S1 and S4c) nor in
radar (Cha et al. 2020). SAR also shows stronger winds on the
northwestern and southwestern sides where the radial decay
in wind speeds is largest. Both SAR and the analysis show the
lopsided nature of the winds in Michael with winds exceeding
64 kt extending southeast of the center. In the inner core re-
gion, the analysis shows lower wind speeds than the SAR. In

outer regions, the maximum extent of 34-kt winds between
the analysis and SAR are comparable except in the north-
western region of the storm. The scatterplot in Fig. 7d
compares the resolution-corrected SAR and the analysis cal-
culated within 90 n mi (166 km) from the storm center, and
shows underestimates of winds in the core and overestimates
below wind speeds of approximately 40 kt. It is noteworthy
that during the ;8-h time of observation collection, Michael
was intensifying with a 5-kt increase and 11-hPa decrease in

FIG. 6. Results based on the 6-h forecast HWRF 10-m winds valid at 1800 UTC 20 Sep 2020 for Hurricane Teddy (Case 3) where the ra-
dial distances have been scaled by a factor of 0.5. Analysis results for (a) enhanced, (e) alpha pattern, and (i) single transect observational
coverage; (b),(f),(j) observed 10-m winds; (c),(g),(k) analysis biases; and (d),(h),(l) observations vs analysis scatterplots. The observational
coverage on all panels except the scatterplots provide the tracks of the synthetic aircraft tracks (black lines). The magnitude of the wind
speeds is provided on the analyses and observations panels, and biases are shown in both the bias panels and the scatterplots as indicated
by the colors in the color bars located above (a) and (c), respectively.

TABLE 4. Details of the comparisons between the surface wind analysis and SAR-based winds speeds from Sentinel-1A/B and
RadarSat-2. Intensities of 2018 and 2020 final best tracks.

Storm Analysis time and date SAR time Satellite Intensity

Hurricane Michael 1200 UTC 10 Oct 2018 1150 UTC Sentinel-1A 125 kt
Hurricane Delta 0000 UTC 8 Oct 2020 0008 UTC Sentinel-1B 80 kt
Hurricane Laura 1200 UTC 25 Aug 2020 1135 UTC RadarSat-2 65 kt
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the final best track between 0600 and 1200 UTC (Beven et al.
2019). These changes in the storm intensity likely led to some
biases, but there is still reasonable agreement between SAR
and analyzed wind speeds with a root-mean-square deviation
of 10.5 kt calculated within radii of 90 n mi of the center. The
analysis produced wind radii features that agreed with both the
SAR and the NHC best track. The analysis estimated the RMW to
be 11 n mi versus 9 n mi in the SAR. The analysis found a maxi-
mum wind of 113 kt versus 135 kt from SAR and 125 kt from
NHC’s best track. The azimuthally averaged 34-, 50-, and 64-kt wind
radii also agreed well among all three sources, except the SAR had
a larger averaged 64-kt wind radius (53 nmi versus;33 nmi).

The second case, Hurricane Delta (2020), a nonmajor hurri-
cane, started to intensify after passing over the Yucatán Peninsula
reaching 80 kt by 0000 UTC 8 October, and was intensifying, 5 kt,

25 hPa during the observation compositing (Cangialosi and Berg
2021). The SAR estimated a maximum wind of ;78 kt with a
RMW of 22 n mi, whereas the analysis estimated 67 kt and
20 n mi, respectively. Based on Figs. 8a and 8b, the region with
34-kt or stronger winds is much larger in the surface analysis, but
seems partially supported by the 700-hPa observations. The analy-
sis does a good job in this case of providing inner core estimates
of winds and indicating narrow and near circular wind maximums.
The RMW is similar between the analysis and SAR, but in-eye
wind speeds are quite a bit higher in the SAR, which is evidence
of the analysis’ smoothing. The secondary wind maximum north
of the storm in SAR, is also absent in the analysis and in the air-
craft observations (Fig. 8c). Given the analysis’ azimuthal smooth-
ing and the nearly instantaneous SAR observations are nearly
34 kt, slight differences are not surprising. Scatterplots in Fig. 8d

FIG. 7. (a) Surface wind analysis for Hurricane Michael (2018) valid at 1200 UTC 10 Oct, (b) wind retrieval from
the 1150 UTC 10 Oct Sentinel-1A SAR overpass, (c) thinned flight-level aircraft reconnaissance observations, and
(d) a scatterplot showing how the SAR winds from the two-pass Barnes analysis compare to those in the final analysis.
Gray regions in (a)–(c) indicate landmasses.
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show details of the differences, where a slight high bias appears in
the surface analysis. For this case, the root-mean-square deviation
calculated within 90 n mi is 8.6 kt.

The third case is from Hurricane Laura (2020) after moving
from the Sierra de los Órganos in western Cuba to the Gulf of
Mexico. At 1200 UTC 25 August, Laura started regaining
strength, intensifying by 5 kt in the past 6 h, and had esti-
mated maximum winds of 65 kt (Pasch et al. 2021). The analy-
sis estimated the maximum winds at 61 kt with a RMW of
44 n mi versus 65 kt and 32 n mi, respectively, from SAR. The
wind structure was highly asymmetric as shown in both the
analysis and RadarSat-2 SAR wind speeds in Figs. 9a and 9b.
In both wind speed estimates, the asymmetrical region of
50-kt winds is located 100 km to the north and east of the cir-
culation center. However, in this case, SAR misses the pocket
of 50-kt winds on the northern side of Laura’s eyewall evident
in the aircraft flight-level observations (Fig. 9c). In general, the

analysis is more symmetric than the SAR retrievals due to
the azimuthal smoothing. From the scatterplot in Fig. 9d, the anal-
ysis shows this high bias in winds less than 40 kt predominantly in
the northeast and southwest storm quadrants (see Fig. 9c). The
root-mean-square deviation calculated within 90 n mi is 16.6 kt.

TC interaction with land affects the surface wind field and
results in weaker winds than will be observed over the open
ocean. In the Delta and Laura cases, the TCs had moved off
land implying that the winds in the boundary layer will be
weaker than the winds observed at flight level. This is evident
in Laura where the strongest SAR winds are collocated with
convection (not shown) and allows midlevel winds to mix
down to the boundary layer. The analysis does not factor in
the time since land interaction, which likely accounts for much
of the analyses’ high biases in the Delta and Laura cases.

Overall, the aircraft-based analysis captures the wind fields
shown in the SAR wind speed retrievals. We reiterate that

FIG. 8. As in Fig. 7, but for Hurricane Delta (2020) valid at 0000 UTC 8 Oct with the coincident wind retrieval from
the 0008 UTC 8 Oct Sentinel-1B SAR overpass.
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SAR wind speeds are nearly instantaneous and that the retriev-
als are indirect estimates of the wind speed. Given that back-
ground, the shortcomings of the analyses seem to be related
to compositing several hours of observations, not capturing
boundary layer changes (Laura and Delta), and the necessity of
radial and azimuthal smoothing. It is also not surprising that un-
derestimation of the maximum wind is systematic in the analy-
ses due to aircraft under sampling. Uhlhorn and Nolan (2012)
found average underestimates of peak wind of about 8.5%, and
Klotz and Nolan (2019) found underestimates ranging from 0%
to 17% depending on eye size and sampling strategy.

5. Summary and discussion

This paper documents a real-time surface wind analysis for
TCs observed by low-level aircraft reconnaissance. The analy-
sis uses both flight-level wind vectors and surface SFMR-

based wind speed estimates combined in a storm-following
manner in time windows # 8 h. The winds are adjusted to a
common 700-hPa analysis level or CFL using a set of flexible
and changeable flight-level to surface reduction factors. The
analysis is performed on a polar grid and uses an iterative ap-
proach with variable observation type-based weights and
smoothing constraints. Real-time HDOBS provide flight-level
and SFMR wind information every 30 s, and ATCF working
best tracks, aircraft center fixes, and official forecasts provide
center-tracking information. To extend the information con-
tained in aircraft observed transects, separate azimuthal and
radial smoothing constraints are applied. The analysis is run
several times progressively decreasing the radial and azimuthal
smoothing constraints and readjusting the observed winds to
the CFL using updated RMW estimates, the OBITUS analysis.
By progressively reducing the smoothing, the analysis captures
the information in the observations including the RMW, which

FIG. 9. As in Fig. 7, but for Hurricane Laura (2020) valid at 1200 UTC 25 Aug with the coincident wind retrieval from
the 1135 UTC 25 Aug RadarSat-2 SAR overpass.

K NA F F AND S LOCUM 345FEBRUARY 2024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/02/24 05:05 PM UTC



is critical to adjusting the final analysis to the 10-m surface, and
assigning inflow angles. Finally, if the points are overland the
winds are reduced by another 20% and the inflow is increased
by an additional 208.

The aircraft flight-level observations are under analyzed
while the SFMR winds at the CFL are better estimated as a
function of radius. These underestimates are likely due to the
use of azimuthal and radial filters, data weights, and under
sampling maxima and minima in the wind observations. The
resulting analyses, however, capture the bulk vortex character-
istics. Using synthetic model-based observations, we show that
as the observational coverage increases, the errors and biases
become smaller, and reveal a sensitivity to the first guess, in re-
gions where there are no aircraft-based nor SFMR-based ob-
servations. Finally, through demonstrations based on observed
SAR surface wind retrievals and synthetic flight-level and
SFMR transects, the resulting analysis produces a realistic, yet
more symmetric, wind field based on few in situ observations.

We recognize that this is a simple analysis system in com-
parison to advanced data assimilation methods, and with addi-
tional funding and effort, further improvements are possible.
This method does have the advantage that it is observation
driven and provides a useful analysis of the inputs, relies on
simple polar geometry, is available in a timely manner, and
exists today. We see two advantages over advanced data as-
similation, model errors caused by grid geometry, resolution,
boundary layer assumptions and microphysics do not affect
the final analysis, and the analysis provides surface wind analy-
ses that are not reliant on the data assimilation system spread-
ing information efficiently. This analysis provides a baseline
for analyses produced by more advanced methods. The analy-
sis method described here has different shortcomings. It pro-
duces symmetric analyses due to the necessary smoothing of
limited observations in the azimuthal and radial directions,
and it struggles when the observed storm structure and/or in-
tensity evolve quickly during the 8-h analysis window.

It is also worth noting that we have used a large composit-
ing window to create input observations. We use this strategy
to create as many analyses as possible given the relative rarity
of these observations. It is also noteworthy that in most cases,
the reconnaissance target times are close to the synoptic hours
of 0000, 0600, 1200, and 1800 UTC, so the 8-h period often
contains one sortie and one centered on the analysis time.
However, TCs do evolve over any period, and an 8-h window
can include some dramatic changes in intensity and structure.
We examined the variability that can occur during an 8-h
compositing time by comparing the 8-h mean with values
at the aircraft fix times. We specifically examined intensity,
the nonzero averaged 34-kt wind radii, and RMW values
2004–22. Interpolated estimates of intensity and 34-kt winds
come from the final best track estimates whereas RMW esti-
mates come directly from the aircraft estimates. Both the best
tracks and the fix information come from the ATCF data-
bases. The results of this analysis suggest that 96% of the in-
tensity differences are between 610 kt and 85% of the fixes
azimuthally averaged 34-kt wind radii are within 610 n mi.
On the other hand, the RMW can show quite a bit of variabil-
ity with only 70% of the RMW fixes being within 620 n mi of

the 8-h mean value. The distribution of the percent differ-
ences from the 8-h mean RMW in this analysis shows the
quartiles of the distribution ranging roughly 20%–35%. In ad-
dition, RMW values are skewed toward larger values. It is
noteworthy that fixes of RMW are noisy by the nature of the
estimates, i.e., as the maximum along both inbound and out-
bound legs. This simple analysis suggests that in most cases in-
tensity and structure are within typical uncertainties of intensity
estimation (Torn and Snyder 2012; Landsea and Franklin 2013)
and 34-kt wind radii (Sampson et al. 2018; Combot et al. 2020).
However, RMW estimates are less trustworthy and likely to be
larger than observed instantaneously, a result that is similar to
the comparison of best track RMW and SAR-based estimates
(Fig. 9, Combot et al. 2020). Finally, this is a data-fitting method,
so regions outside the radius of maximum observational cover-
age could be erroneous as they become reliant on the first
guess.

It is also important to realize that as SFMR algorithms
change and guidance on how to estimate surface winds from
the flight/analysis level evolve, the algorithm can adjust to
those new inputs and can reflect new flight-level to surface re-
duction methodologies. In the future, we want to conduct
more comparisons with SAR, and to compare the output of
these analyses to the ideas and concepts presented in Uhlhorn
et al. (2014). There are also new data platforms becoming
available that may provide additional sources of observations
and validation to better estimate the surface winds in tropical
cyclones (Holbach et al. 2023). Also, this analysis could make
use of tail Doppler winds (e.g., Rogers et al. 2012) processed
in real time aboard the NOAA reconnaissance aircraft, and
will be explored soon.

These analyses can likely be improved with additional efforts.
These include accounting for the slope of the radius of maxi-
mum winds between flight-level and surface observations,
the application of a more realistic boundary layer scheme as the
vertical column assumption used to reduce the analysis to the
10-m surface is also a known shortcoming (e.g., Kepert 2001),
and the addition of other observations, when available. In this
work, we have identified the sensitivities to the first guess, and
future work will target this shortcoming, using the global mod-
els that have shown the ability to estimate the maximum extent
of 34-kt winds with useful accuracy (Knaff and Sampson 2015;
Sampson and Knaff 2015; Sampson et al. 2017, 2018).

This manuscript provides the documentation for these analyses
that have proved useful for several applications. Analyses have
been generated in real time since the 2010 hurricane season
though the algorithm was only recently finalized. Analyses have
many applications beyond providing real-time assessments. Past
analyses have been rerun using the final algorithm and are freely
available as described in the data availability statement. Finally,
through work with NHC, the analyses are now produced in their
local computational environment (since 2021), and analysis fixes
are available in the operational ATCF fix database.
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